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Abstract—This paper presents an optimal, robust, adaptive
tuning strategy based on a linear model predictive control
(LMPC) scheme for the switching gain of a sliding mode
control (SMC). The LMPC employs a moving horizon, where
the dynamics of the sliding-mode-controlled system is addressed.
The control design is presented exemplary for a DC drive which
is subject to both nonlinear friction as well as model uncertainty.
The overall control has a cascade structure. In the inner control
loop for the currents, a flatness-based control is used. The outer
control loop involves an integral sliding mode control of the
angular velocity that is combined with a LMPC that adapts the
switching height of the discontinuous control action.

Index Terms—Model Predictive Control, Sliding Mode Control,
Adaptive Control, Flatness, Friction Compensation, DC Drives

I. INTRODUCTION AND MOTIVATION

As an important mechatronic component, electromagnetic
actuators are used in many technical applications, in partic-
ular in the automotive industry and in industrial production
systems. In production systems, they play a main role in
motion control and precise positioning. Mechanical, pneu-
matic or hydraulic components have been replaced by elec-
tromagnetic actuators due to their high efficiency, excellent
dynamic behavior and cleanliness. This paper considers a
direct current (DC) drive system that is subject to both
nonlinear friction and model uncertainty. A combination of
sliding mode control (SMC) and linear model predictive
control (LMPC) is proposed for its control. Here, the LMPC
adapts the switching height of the discontinuous control part
and, thereby, reduces the undesired chattering effect. MPC
still constitutes a developing research field in the context of
machines and drives, though many applications already use
such control strategies, e.g., in [1] for a PMSM or in [2]
and in [3] for a DC drive. The MPC approach takes into
account model-based predictions and determines the control
inputs by minimizing a cost function. However, compared to
classical controllers like PID, this method from the field of
optimal control requires a relatively high modeling accuracy
in order to yield acceptable results. SMC, however, is famous
for being robust against disturbances, model mismatch and

parametric uncertainties. While belonging perhaps to the most
robust and versatile control strategies, SMC tends to suffer
from high energy consumption and high-frequency oscillations
in system inputs, states or even outputs, which certainly is to
be avoided in tracking problems. To this day, many remedies
have been proposed and successfully realized to deal with
these problems. A very important one is the so-called boundary
layer approach, see [4], by introducing a permissible region
around the sliding surface, characterized by its thickness, in
which no switching of the control input takes place. There
are also approaches to achieve an intelligent adaptivity of
switching amplitudes, of which the contribution at hand treats
one. In the context of drives, SMC has even been used to
reduce torque ripple [5], [6]. Other examples include [7],
where an adaptive-gain SMC technique is employed for a
brushless DC motor. The combination of SMC and LMPC
allows for exploitation of the advantages of both worlds,
gaining both robustness and a degree of optimality w.r.t. the
specific cost function – at the cost of high control design,
implementation and computation effort. Nevertheless, thanks
to modern computers and micro-controllers, it is possible to
go even further by using observer-based control, utilizing only
a minimal number of sensors, see [8] and [9]. The goal of this
contribution is to conceive a SMC with optimal adaptivity that
can be implemented as simply as possible. Its effectiveness
is demonstrated in simulations, subject to realistic conditions
regarding disturbances and uncertainties, controlling the speed
of a DC drive which was modeled with nonlinear friction. The
non-linearity is represented by the Coulomb friction model,
which is a classical friction model based on experiments. An
extended survey of friction modeling was presented in [10]
including a large number of literature references. Recent con-
tributions mark progress in terms of identification of friction
phenomena and their compensation [11]. The proposed SMC
does not utilize a constant switching gain, but an adaptive
gain provided by the LMPC. While technically violating
Lyapunov’s condition for asymptotic stability, which anyway
constitutes not a necessary but only a sufficient condition,
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Fig. 1. Nonlinear friction torque involving Coulomb friction and a quadratic
term w.r.t. the motor angular velocity.

tracking control is achieved despite simulated implementation
errors, noise and load torques. The conceptual structure of
the control strategy is presented in Fig. 2. The paper is
organized in the following way: Section II describes the model
of the DC drive with its friction nonlinearity. In Section III,
the flatness-based control of the motor current is discussed,
which represents the inner control loop of a cascade control
structure. The design of the outer control loop is presented
in the subsequent sections: Section IV describes the nonlinear
sliding mode control design that involves a continuous and
a discontinuous control action. The linear model-predictive
control for the adaptation of the discontinuous part is discussed
in Section V, Corresponding simulation results are presented
in Section VI. Finally, conclusions close the paper in Section
VII.

II. SYSTEM MODEL

Though being more and more superseded by brushless
drives, brushed DC motors are still significantly present in
various industrial facilities and generally used in the plastics,
rubber, paper, textile, printing, oil, chemical, metal, and mining
industries.

A. Dynamic system modeling using ODEs

Let’s consider the following system model of a DC drive

di(t)

dt
=

1

L
(u(t)−Ri(t)−KTω(t)) (1)

dω(t)

dt
=

1

J
(KT i(t)− Tr(ω(t))− d(t)) , (2)

with the nonlinear friction torque

Tr(ω(t)) =
(
Kfω

2(t) + Tr0
)

sign(ω(t)), (3)

where Kf > 0 is a coefficient related to the quadratic
term in the motor angular velocity, and Tr0 describes the
Coulomb friction part. Moreover, a lumped disturbance torque
d(t) represents any further external loads torques, unmodeled
dynamic effects and model uncertainty. The nonlinear friction
torque Tr(ω) = Tr(ω(t)) is depicted in Fig. 1.

B. Flatness of the system model

A system is differentially flat if a set of outputs, where the
number of outputs is identical to the number of control inputs,
can be found such that all states and inputs can be expressed
in terms of those outputs (and their derivatives) [12]. A system
described by the state vector x ∈ Rn and the vector of control
inputs u ∈ Rm is denoted differentially flat if the outputs
y ∈ Rm have the following form

y = y(x,u, u̇, . . . ,u(ϕ)) (4)

and both the states and inputs can be parametrized as

x = x(y, ẏ, . . . ,y(α)), u = u(y, ẏ, . . . ,y(γ)). (5)

The flatness property is particularly attractive when explicit
trajectory tracking is envisaged [13], [14]. The flat output
uniquely determines the behavior of the flat system and allows
for a trajectory planning in the output space. Afterwards,
the output trajectories are mapped to the appropriate inputs.
Concerning the determination of the flat output, only for a
limited number of system types algorithms are forthcoming.
Nevertheless, often an educated guess or the investigation of
the output of interest – by means of the definition given by
(4) and (5) – directly leads to the flat output.

III. DESIGN OF THE FLATNESS-BASED FEEDFORWARD
CURRENT CONTROL

The model of the current dynamics (1) is obviously differ-
entially flat. Therefore, this differential equation can be solved
for the corresponding armature voltage as control input. Doing
so, yields the inverse dynamics

u(t) = L
di(t)

dt
+Ri(t) +KTω(t). (6)

As no current measurement is available, the flatness-based
control is implemented in a feedforward manner as follows

u(t) = L
did(t)

dt
+Rid(t) +KTω(t), (7)

with the measured velocity ω(t), the desired current id(t) and
its derivative, which is obtained by an approximate differenti-
ation, i.e., a first-order high pass filter with corner frequency
fc

G(s) =
2πfcs

s+ 2πfc
. (8)

Note that fc is an important tuning parameter in the case of
switchings in the desired flat output signal id(t).

IV. DESIGN OF AN SMC TO OBTAIN A GLOBALLY
ASYMPTOTICALLY STABLE CONTROL LOOP

For the SMC design, consider an integral sliding surface
with integral gain α and velocity error e(t) := ωd(t)− ω(t):

s(t) = e(t) + α

∫ t

0

e(τ)dτ − e(0), (9)

where e(0) is the initial error, whose presence in s(t) can
theoretically eliminate the reaching phase (s(0) = 0), see [15].
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In this contribution, e(0) is assumed to be unknown and is
set to zero in the implementation. Considering the quadratic
Lyapunov function candidate

V (s) =
1

2
s2(t), (10)

its time derivative follows as

V̇ = s(t)ṡ(t) (11)

= s(t)
(
ω̇d(t)− ω̇(t) + α (ωd(t)− ω(t))

)
= s(t)

(
ω̇d(t)−

KT

J
i(t) +

Tr(ω)

J
+

1

J
d(t) + αe(t)

)
,

the following SMC law is proposed

id(t) =
J

KT

(
ω̇d(t) +

Tr(ω)

J
+ αe(t)

)
︸ ︷︷ ︸

ideq (t)

+
J

KT
β sign(s(t))︸ ︷︷ ︸
idsw (t)

. (12)

It should be noticed that ideq (t) represents the equivalent
control part of the control law, and idsw(t) is the discontinuous
control part. If the model parameters were exactly known, no
external disturbance occurred, i.e. d(t) = 0, and a perfect
cancellation was assumed, then the time derivative of the
Lyapunov function (10) would result in

V̇ = −β|s(t)|. (13)

Given a positive switching height β > 0, the SMC law in (12)
is such that s2(t) represents a Lyapunov function of the closed
loop system, see page 282 of [15].

Remark 1: Please recall that a system ẋ(t) = f(x(t), u(t))
under time-varying feedback u(x(t), t) represents a non-
autonomous system. This is needed, for instance, in the typical
case in which x(t) should exactly track a time-varying tra-
jectory. Nevertheless, invoking the Lyapunov-like Lemma on
the non-autonomous systems, the control law (12) guarantees
global uniform asymptotic stability of the controlled system
around the desired trajectories ωd(t), see p. 125 of [15].

Remark 2: In real applications, however, due to parametric
uncertainty in the system model, non-exact cancellations have
to be considered. As a result, the following condition for the
switching height must be guaranteed

β > δ > max |∆(t)|, (14)

where it is assumed that ∆(t) is bounded by a known real
quantity δ

max |∆(t)| = max
|d(t)|
J

+ max |∆p(t)| < δ, (15)

where term max |∆p(t)| represents the upper bound of the
”residual” error cancellation due to possible parameter uncer-
tainties after the introduction of the equivalent current ideq (t).

Fig. 2. Control scheme: Combination of MPC, SMC and flatness-based
current control. The gray block represents the physical system. s(t) must
be delayed by one time step to avoid algebraic loops.

After inserting the control law into the system dynamics, the
closed-loop system dynamics becomes

ω̇(t) = ω̇d(t) + α (ωd(t)− ω(t)) + βsign(s(t)) (16)
⇒ 0 = ω̇d(t)− ω̇(t) + α (ωd(t)− ω(t))︸ ︷︷ ︸

ṡ(t)

+βsign(s(t))

⇒ ṡ(t) = −βsign(s(t)). (17)

Equation (17) states the "error" dynamics, or to be more
exact, the dynamics of the sliding surface of the closed-loop
system.

V. LMPC FOR THE SWITCHING GAIN ADAPTATION

When designing an SMC in practice, the switching gain
parameter β is often tuned only once, in a way that satisfies a
condition like (14) while keeping β as small as possible. This
rather conservative controller design may lead to chattering
in the control input, or even in the system states or outputs.
A popular mitigation technique is to introduce a permissible
region (called boundary layer) with a certain thickness around
the sliding surface, in which we may remain without further
switchings – and, in general, without necessarily reaching
or staying on the sliding surface. While this strategy has
many advantages, it clashes with the basic idea of the sliding
mode control. In this contribution, an alternative technique is
proposed that consists of an MPC scheme to adaptively tune
the switching height β = β(k). From (17), using an explicit
Euler discretization with a sampling time of tS = 10 µs,
t = ktS , k = 0, 1, 2, ..., the following discrete-time state-space
representation is obtained:

s(k + 1) = s(k)− Tsβ(k)sign(s(k)), satisfying (18)
s(k + 1) = Aks(k) + Bkβ(k), y(k + 1) = Cks(k + 1),

⇒ Ak = A = 1, Bk = −Tssign(s(k)),

Ck = C = 1.
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Using iterations, the system behavior can be predicted as

ŷ(k + 1) = C A x(k) + C Bk uMPC(k) (19)

ŷ(k + 2) = C A2 x(k) + C A Bk uMPC(k)

+ C Bk+1 uMPC(k + 1),

ŷ(k + 3) = C A3 x(k) + C A2 Bk uMPC(k)

+ C A Bk+1 uMPC(k + 1)

+ C Bk+2 uMPC(k + 2), etc.

It is straightforward to show that the following vector expres-
sion holds

Ŷ(k) = Gx(k) + FU(k), (20)

with

Ŷ(k) =


ŷ(k + 1)
ŷ(k + 2)

...
ŷ(k + p)

 , U(k) =


uMPC(k)

uMPC(k + 1)
...

uMPC(k + p− 1)

 (21)

and prediction horizon p. The system matrices for use in MPC
result in

G =
[
C A C A2 ... C Ap

]T
, (22)

F =


CBk 0 ... 0
CABk CBk+1 ... 0
... ... ... ...

CAp−1Bk CAp−2Bk+1 ... CBk+p−1

 , (23)

where the prediction horizon p should not be chosen too large,
considering that matrix Bk might change anytime. For p = 2,
these matrices simplify to

G =

[
1
1

]
, F(k) = −Ts

[
sign(s(k)) 0
sign(s(k)) sign(s(k + 1))

]
.

(24)
With given sign(s(k)), sign(s(k + 1)) can be obtained from
prediction (18) using the last step’s β.

Problem 1: Given the system (20), find an optimal input
β(k) which minimizes the following cost function

J(k) =
1

2

(
Yd(k)− Ŷ(k)

)T
Q
(
Yd(k)− Ŷ(k)

)
+

1

2
U(k)TRU(k), (25)

where Q and R are non-negative definite matrices and Yd(k)
is the sliding surface reference trajectory for the next p time
steps. In this case, its elements can simply be set to zero.
The solution can be obtained in a closed form

U(k) = (FTQF + R)−1FTQ
(
Yd(k)−Gy(k)

)
, (26)

where y(k) = s(k) and sliding mode control switching gain
β = β(k) is now chosen as the first element of U(k).

Remark 3: The MPC with the predicted sliding surface
is realized with matrices (18) that do not depend on any
systems parameters, and thus this approach states an intrinsic
robustness of the prediction.

Fig. 3. Values of switching gain β for the scenario with sinusoidal load
torques.

Fig. 4. Voltage u(t) for pulsed load torques.

Fig. 5. Voltage u(t) for sinusoidal load torques.

VI. SIMULATION RESULTS

The simulations were performed using a number of practice-
oriented artificial restrictions and loads. Namely, the motor
input voltage u(t) is restricted to [-12 V, 12 V]. The parameter
Tr0 for the Coulomb friction, which significantly influences
the equivalent control part ideq (t), is biased with +20% error
in the control law. Furthermore, additive white Gaussian noise
with maximum amplitudes of 0.2% of the maximum of ωd(t)
is used in state feedback ω(t). The load torque, see d(t) in (2),
is modeled in two different scenarios – as a sine wave with
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Fig. 6. Accurate tracking of ωd(t) is achieved for all variants in both
scenarios.

Fig. 7. Tracking error in the case of sinusoidal loads.

an amplitude of 0.5 mNm and a frequency of 100 rad/s, and
as a pulsed signal with random amplitudes within [-0.2 mNm,
5.5 mNm]. The control scheme of this simulation is shown in
Fig. 2 where the loops can be retraced. Using this procedure,
the chattering amplitude of the control input can be drastically
reduced. This control strategy can be seen as an alternative to
the well-known sliding surface thickness approach. In contrast
to the latter, it can only reduce the chattering amplitude but
not necessarily the frequency. However, the advantages make
it worthwhile to conclude: The motion remains on the sliding
surface because the necessary switchings according to the
discontinuous term sign(s) are executed. The difference in
chattering behavior for adaptive and constant values of β is
shown in Fig. 3 up to Fig. 9. In Fig. 3, a comparison of
magnitude w.r.t. a constant β and an adaptive β(k) is depicted.
Note that for sinusoidal loads β(k) also shows a periodic
behavior. The influence of different load characteristics can
be seen best in Figs. 4 and 5 where the motor input voltages
u(t) are shown. It also demonstrates the significant reduction
of the chattering amplitude because the control input signal is
much smoother using the adaptive approach. Fig. 6 indicates
at first glance that both controllers, with constant and adaptive
β, are able to track the reference trajectory. However, when
taking a closer look at the tracking error in Fig. 7, it can be
stated that the adaptive approach works significantly better,

Fig. 8. Function s(t) for pulsed loads.

Fig. 9. Function s(t) for sinusoidal loads.

as long as there are no discontinuities or too fast changes
in the load or reference trajectory signals. Fig. 9 similarly
shows residual oscillations in s(t) even though the tracking
error remains in the vicinity of zero. This large choice of α
turned out to be necessary in simulations in order to ensure the
cancellation of uncertain terms in the electrical subsystem (2).
The superior performance of the adaptive variant, compared
to the conventional SMC with a constant switching amplitude,
can be seen in Table I, where the ITAE is defined as

∫
|e(t)|tdt

and the (input) energy is evaluated as
∫
u2(t)dt. Note that the

large differences in chattering amplitudes do not have much
influence on the input energy computed this way. Figs. 10 to 13
show the results for another variant of the SMC based on the
boundary layer approach, i.e., where sat(s) instead of sign(s)
is used in the control law. An interesting effect can be observed
in Fig. 8 (s(t) for the adaptive variant) and in Fig. 10 (s(t) for
the boundary layer variant): Both show the behavior of s(t)
characterized by a nonzero value in several sections. In the
latter case, this is caused by the permissible boundary region;
nevertheless, the adaptive SMC shows a similar effect. As
indicated in Table I, however, the adaptive approach performs
comparably well compared to the boundary layer variant.

VII. CONCLUSIONS

To adaptively tune the switching gain of an SMC, a linear
MPC scheme based on the closed-loop system dynamics is
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TABLE I
MEASURES FOR THE TRACKING PERFORMANCE

Const. β Const. β w/ sat Adaptive β

ITAE Sine ld.: 2.8 10−3

Pulse ld.: 2.7 10−3
Sine ld.: 2.1 10−3

Pulse ld.: 4.4 10−4
Sine ld.: 7.3 10−4

Pulse ld.: 6.9 10−4

Energy Sine ld.: 18.9
Pulse ld.: 20.1

Sine ld.: 18.2
Pulse ld.: 19.3

Sine ld.: 18.2
Pulse ld.: 19.3

Fig. 10. Voltage u(t) for pulsed load torques.

Fig. 11. Voltage u(t) for sinusoidal load torques.

conceived. This strategy is applied to a DC drive in simulations
in order to analyze its performance. This combination of an
optimal and a robust controller is further extended using a
flatness-based control to solve a velocity tracking problem.
The simulations show great potential of this combination of
controllers.
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